Meeting Requirements, Exceeding Expectations: Understanding the Role of Evaluation in Federal Grants

May 25, 2016
Webinar will begin at 3pm ET

CLICK HERE TO WATCH THE WEBINAR RECORDING
Webinar Details

- For this webinar you will be in listen only mode using your computer or phone
- Please ask questions via the question window
- This webinar is being recorded – you will be sent a recording link

Disclaimer: This material is based upon work supported by the National Science Foundation under Grants #1205077, #1261893 and #1204683. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
The CCTA IS Led By

- **National Center for Convergence Technology (CTC)** at Collin College in Frisco, TX (lead)
- **South Carolina ATE National Resource Center (SCATE)** at Florence Darlington Technical College in Florence, SC
- **Florida ATE Center (FLATE)** at Hillsborough Community College in Tampa, FL
- **Bio-Link Next Generation National ATE Center for Biotechnology and Life Sciences (Bio-Link)** at City College of San Francisco in San Francisco, CA
- **Networks Resource Center** at the Maricopa Community College District in Phoenix, AZ
CCTA Purpose

• Respond to a request from the Department of Labor (DOL) to the NSF to have ATE Centers provide technical assistance services to DOL TAACCCT grantees

• Activities relevant for DOL grants, NSF grants and workforce-oriented programs of all kinds

• Deliverables
 – Topical webinars on existing and new solutions
 • Live/recorded with attendee Q&A
 – Identify and document best practices
 – Host convenings
TODAY’S PRESENTERS

Lori Wingate
Director of Research,
The Evaluation Center at Western Michigan University

Leslie Goodyear
Principal Research Scientist,
EDC

Ann Beheler
Facilitator
PI, National CTC
Poll: Your Affiliation

A. I am involved with an NSF grant
B. I am involved with a TAACCCT grant
C. Both
D. Neither
This material is based upon work supported by the National Science Foundation under grant number 1204683. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the presenters and do not necessarily reflect the views of NSF.
Meeting Requirements | Exceeding Expectations

Understanding the Role of Evaluation in Federal Grants
Overview

PART I: Evaluation Fundamentals
Commentary by Leslie Goodyear | Question Break

PART II: Evaluation Requirements and Expectations
Commentary by Leslie Goodyear | Question Break

PART III: Evaluation Staffing, Budgeting, and Utilization
Commentary by Leslie Goodyear | Question Break
Let’s play

Two Lies and a Truth!

Find your poll buttons
A federal evaluation policy dictates the requirements for project-level evaluation.

All federal grantseekers and grantees should be evaluation-literate.

All federal grant programs require project-level evaluation.
EVALUATION

the determination of something’s quality, value, or importance
1. Ask important questions about a project’s processes and outcomes.

2. Gather evidence that will help answer those questions.

3. Interpret data and answer the evaluation questions.

4. Use the information for accountability, improvement, and planning.
- sometimes used interchangeably
- not everyone agrees on what’s what
- follow funders’ cues

EVALUATION
determines quality and value

RESEARCH
produces generalizable knowledge

ASSESSMENT
often associated with student evaluation
A federal evaluation policy dictates the requirements for project-level evaluation.

But...

Some federal agencies have agency-specific guidance on evaluation (and research),
User-Friendly Handbook for Project Evaluation

Framework for Program Evaluation in Public Health

Common Guidelines for Education Research and Development
All federal grant programs require project-level evaluation. **But...**

There are good reasons to evaluate, even if you don’t have to.
Why some federal programs require projects to be evaluated

Accountability
Improvement
Evidence
Why you should evaluate your project if *even you don’t have to*

Accountability

Improvement

Evidence
Leadership Capacity Building for Faculty: The vitality and growth of the ATE community is closely linked to industry trends and needs as well as the acumen of the PI’s and their institutions who educate technicians. As such, faculty must: 1) work with their institutional administration, 2) effectively manage both programs and project/offices activities, 3) maintain industry connections that include local, statewide, and national economic development efforts, and 4) maintain and cultivate networks with other grantees across federal agencies. Activities that focus on these skills include:

- Program Solicitation: Official document that explains grant opportunity, its requirements, and how to apply

- Funding Opportunity Announcement

- Request for Proposal

- Program Announcement

- Notice of Funding Availability

Teacher Preparation: The foundation for advanced technological education is grounded in strong mathematics and science technology education in K-12 schools. The preparation of future teachers who will facilitate student learning in mathematics and science and cultivate an interest in technological careers is an important component of the ATE communities. Teacher preparation projects are expected to lead to new PI’s acquiring skills needed to successfully manage, complete, evaluate, disseminate, and sustain their projects as well as fostering leadership skills such that they may become mentors at a future time;

- Identifying and mentoring faculty and their administrators for the purpose of developing and implementing a new curriculum and strategies that are sensitive to the needs and interests of all students; and

- Conducting and analyzing research about the value and impact of working with the ATE Program and its community. These efforts could include providing information about opportunities, developing effective proposal writing skills, providing guidance on ways of surveying area industry to determine industry needs as well as finding ways to evaluate and sustain the programs and other initiatives.

The project's evaluation is focused on providing projects that will attract prospective K-12 science, mathematics, or technology teachers in preservice or paraprofessional programs. These efforts will be linked to the professional development of the participating teachers, providing them with the opportunity to apply knowledge gained to their lives as K-12 teachers and to build on the extensive research literature on teacher preparation. Two-year colleges have the unique advantage of having technology faculty, connected with high performance workplace, who can work with mathematics and science faculty in developing and teaching these programs.

The project’s evaluation will focus on the extent to which the students, prospective K-12 teachers, transfer those students into four-year teacher preparation programs, enhance their understanding of real-world technologies used in the workplace, and enhance their ability to improve the technological literacy of their students. Project leaders should also be prepared to contribute to longitudinal studies that track students beyond the post-secondary level, evaluate the number who graduate with teaching credentials, find positions in K-12 schools, and ultimately succeed in the classroom.

Business and Entrepreneurial Skills Development for Students: In addition to technical skills and disciplinary content, students entering the industry environment need skills that allow them to understand and work effectively in a business environment. Many companies have a global presence, and students need to understand that the global economy affects them as employees. Another sector of the industry is comprised of small start-up companies, and these have different attributes than large established firms. Students need to understand these attributes and differences to be effective employees.

Employers often expect employees to possess knowledge, skills and competencies in a specific technical area and to demonstrate professional, industry related, and entrepreneurship acumen. Entrepreneurship skills can be developed in students in technician education programs by having them take selected business courses, by engaging students in problem-based learning using projects of interest to local industry, working with local economic investment organizations and by developing incubator programs that provide experiences for students to interact with entrepreneurs. Projects are encouraged that:
Leadership Capacity Building for Faculty: The vitality and growth of the ATE community is closely linked to industry trends and needs as well as the acumen of the PIs and their institutions who educate technicians. As such, faculty must: 1) work with their institutional administration, 2) effectively manage both programs and project/center activities, 3) maintain strong connections with industry, and 4) maintain and cultivate networks with other grantees across funding agencies. Activities that foster these skills might include:

- Mentoring programs that enable new PIs to learn from grantees. Activities are expected to lead to new PIs acquiring the skills needed to successfully manage, complete, evaluate, and sustain their projects as well as fostering personal leadership skills so that they may become mentors at a later time;
- Identifying and engaging faculty and their administrators for the purpose of developing and implementing a new curriculum in an advanced technological area to educate technicians for local industry needs; and
- Outreach efforts that reach faculty and their institutions to educate them about the value and potential impact of working with the ATE Program and its community. These efforts could include providing information on funding opportunities, developing written proposal writing skills, providing guidance on ways to successfully market industry to determine industry needs and, as well as finding and working with local workforce investment boards and other entities.

Teacher Preparation: The foundation for advanced technological education is growing strong in mathematics, science, and technology education in K-12 schools. The preparation of future teachers who will facilitate student learning in mathematics and science and create an interest in technological careers is an important component of the ATE program. ATE teacher preparation projects have the potential to contribute to K-12 teaching workforce that is well trained in science and technology, understands the technological workplace, and uses an array of approaches to teaching real world technology related problems using design processes and principles as tools for technological literacy. (ITEA http://www.iteaconnect.org)

Teacher Preparation projects must focus on both secondary and tertiary institutions and should aim to increase the number, quality, and diversity of prospective K-12 science, mathematics, or technology teachers in preservice or paraprofessional programs. These projects are expected to improve the prospective teachers' technological understanding, provide them with experiences to use in engaging students in real world technological problems; improve their understanding of the modern workplace; and strengthen their preparation in science and mathematics. These projects are expected to build on the research literature on teacher preparation. Two-year colleges have the unique advantage of having technology focused programs with the high performance workplace, where they work with mathematics and science faculty in developing students.

The project’s evaluation plan must measure the effectiveness of efforts to meet project goals. For example, suppose students into four-year teacher preparation programs, enhance their understanding of advanced technology, and enhance their ability to interpret the technological literacy of their students. Project leaders should also consider longitudinal studies that track students beyond the grant period. For example, to measure the number who gain credentials, find positions in K-12 schools, and demonstrate successful performance in the classroom.

Business and Entrepreneurial Skills Development for Students: In addition to technical skills and disciplinary content, students need skills that allow them to understand and work effectively in a business environment. Many companies have a global presence, and students need to understand that the global economy affects them as employees. Another sector of the industry is comprised of small start-up companies, and these have different attributes than large established firms. Students need to understand these attributes and differences to be effective employees.

Employers often expect employees to possess knowledge, skills, and competencies in a specific technical area and to demonstrate professional, industry related, and entrepreneurial acumen. Entrepreneurship skills can be developed in students in technician education programs by having them take selected business courses; by engaging students in problem-based learning using projects of interest to local industry, working with local economic development organizations and by developing incubator programs that provide experiences for students to interact with entrepreneurs. Projects are encouraged that:
1,717 grant opportunities
25 federal agencies
We’ll look at examples from

NSF

Department of Labor

Department of Education

Centers for Disease Control and Prevention
Comments

Leslie Goodyear, Ph.D.
- Principal Research Scientist at EDC
- Former NSF program officer in the Division of Research on Learning
Questions?

Lori
Wingate

Leslie
Goodyear
Overview

PART I: Evaluation Fundamentals
Commentary by Leslie Goodyear | Question Break

PART II: Evaluation Requirements and Expectations
Commentary by Leslie Goodyear | Question Break

PART III: Evaluation Budgeting, Personnel, and Utilization
Commentary by Leslie Goodyear | Question Break
Guidance Gauge

- No Guidance
- Very Detailed Guidance
Leadership Capacity Building for Faculty: The vitality and growth of the ATE community is closely linked to industry trends and needs as well as the acumen of the PI's and their institutions who educate technicians. As such, faculty must: 1) work with their institutional administration, 2) effectively manage both programs and project center activities, 3) maintain industry connections that include local, statewide, and national economic development efforts, and 4) maintain and cultivate networks with other grantees across funding agencies. Activities that foster these skills might include:

- Mentoring programs that link experienced ATE PI's with new grantees. Activities are expected to lead to new PI's acquiring the skills needed to successfully manage, complete, evaluate, disseminate, and sustain their projects as well as fostering leadership skills such that they may become mentors at a future time;
- Identifying and mentoring faculty and their institutions for the purpose of developing and implementing a new curriculum in an advanced technological area to educate technicians for local industry needs; and
- Outreach activities that reach faculty and their institutions to educate them about the value and potential impact of working with the ATE Program and its community. These efforts could include providing information on funding opportunities, developing effective proposal writing skills, providing guidance on ways of surveying area industry to determine industry needs as well as finding and working with local workforce investment boards and other entities.

Teacher Preparation: The foundation for advanced technological education is grounded in strong mathematics, science, and technology education in K-12 schools. The preparation of future teachers who will facilitate student learning in mathematics and science and cultivate an interest in technological careers is an important component of the ATE program. ATE teacher preparation projects help prepare a future K-12 teaching workforce that is skilled in teaching science and mathematics, understands the technological workplace, and can prepare students to use a variety of approaches to solving real world technological related problems using design processes and principles (ITEA Standards for Technological Literacy, ITEA, https://www.iteanet.org/).

Teacher Preparation programs are expected to provide practical experience and skill building in the depth and breadth of the content, quality, and diversity of programs. In general, these programs involve technology courses and certification programs. These programs are expected to improve student engagement in real world technological problems; improve their understanding of the modern workplace; and strengthen their preparation in science and mathematics. Two-year colleges have the unique advantage of having technology faculty, connected with the high performance workplace, who can work with mathematics and science faculty in developing and teaching these programs.

The project’s evaluation plan must measure the effectiveness of efforts to recruit prospective K-12 teachers, transfer those students into four-year teacher preparation programs, enhance their understanding of advanced technologies used in the workplace, and enhance their ability to improve the technological literacy of their students. Project leaders should also be prepared to contribute to longitudinal studies that track students beyond the grant period, in order to measure the number who graduate with teaching credentials, find positions in K-12 schools, and demonstrate successful performance in the classroom.

Business and Entrepreneurial Skills Development for Students: In addition to technical skills and disciplinary content, students entering the industry environment need skills that allow them to understand and work effectively in a business environment. Many companies have a global presence, and students need to understand that the global economy affects them as employees. Another sector of the industry is comprised of small start-up companies, and these have different attributes than large established firms. Students need to understand these attributes and differences to be effective employees.

Employers often expect employees to possess knowledge, skills, and competencies in a specific technical area and to demonstrate professional, industry related, and entrepreneurship acumen. Entrepreneurship skills can be developed in students in technician education programs by having them take selected business courses, by engaging students in problem-based learning using projects of interest to local industry, working with local economic investment organizations and by developing incubator programs that provide experiences for students to interact with entrepreneurs. Projects are encouraged that:

“evaluation plan”
Evaluation Plan. The application must describe an evaluation plan to review and determine the *quality and effectiveness* of the training project grant.

Occupational Safety and Health Training Project Grants — Centers for Disease Control and Prevention
Evaluation Plan: Based on the theory of change and the desirable outcomes of the proposed revolution, enumerate appropriate indicators of success related to accomplishing the goals and objectives and a timeframe to seek measurable change.

Formation of Engineers: Revolutionizing Engineering and Computer Science Departments
—National Science Foundation
The [evaluation] plan should describe the evaluation design, indicating: (1) what types of data will be collected; (2) when various types of data will be collected; (3) what methods will be used; (4) what instruments will be developed and when; (5) how the data will be analyzed; (6) when reports of results and outcomes will be available; and (7) how the applicant will use the information collected through the evaluation to monitor progress of the funded project and to provide accountability information ...

Innovative Approaches to Literacy Program
—U.S. Department of Education
Performance Evaluation

Describe a data collection plan, aimed at describing the measures, methods, techniques, and tools used to evaluate the project and whether it achieved its anticipated outcomes, that includes, at minimum:

- Identification of specific data on participants and other data that the grantee plans to use, and how the data will be collected for analysis
- Plans for how the grantee will document the lessons learned, both positive and negative
- Plans to identify the most effective TA models and how they were implemented and could potentially be replicated
- Plans for involving program participants in evaluation activities
- Plans for how the data will be used to inform program delivery
Evaluation Plan Elements

1. Evaluation questions
2. Indicators
3. Data sources
4. Data collection methods and instruments
5. Data analysis procedures
6. Evaluation deliverables
7. Timeline
8. Personnel
9. Budget
10. Plan for use of results
Learn more by checking out related resources
—links on the final slide
Evaluation Plan Elements

1. Evaluation questions
2. Indicators
3. Data sources
4. Data collection methods and instruments
5. Data analysis procedures
6. Evaluation deliverables
7. Timeline
8. Plan for use of results
9. Personnel
10. Budget

Identify what aspects of the project will be evaluated

Evaluation Questions Checklist for Program Evaluation
Evaluation Plan Elements

1. Evaluation questions
2. Indicators
3. Data sources
4. Data collection methods and instruments
5. Data analysis procedures
6. Evaluation deliverables
7. Timeline
8. Personnel
9. Budget
10. Plan for use of results

Identify what will be measured in order to answer the evaluation questions

Criteria for Selection of High-Performing Indicators: A Checklist to Inform Monitoring and Evaluation
Describe how evidence will be gathered and analyzed.
Evaluation Plan Elements

1. Evaluation questions
2. Indicators
3. Data sources
4. Data collection methods and instruments
5. Data analysis procedures
6. Evaluation deliverables
7. Timeline
8. Personnel
9. Budget
10. Plan for use of results

Identify products to be generated by evaluation (detailed plan, instruments, reports)
Evaluation Plan Elements

1. Evaluation questions
2. Indicators
3. Data sources
4. Data collection methods and instruments
5. Data analysis procedures
6. Evaluation deliverables
7. Timeline
8. Personnel
9. Budget
10. Plan for use of results

Show how evaluation activities align with project activities and milestones
Identify who will be responsible for which aspects of the evaluation

1. Evaluation questions
2. Indicators
3. Data sources
4. Data collection methods and instruments
5. Data analysis procedures
6. Evaluation deliverables
7. Timeline
8. Personnel
9. Budget
10. Plan for use of results
What aspects of the project will be evaluated? Include a line item for evaluation that matches the scope of work.
Demonstrate intention and commitment to use results for improvement and sharing lessons learned
Evaluation Plan Elements

1. Evaluation questions
2. Indicators
3. Data sources
4. Data collection methods and instruments
5. Data analysis procedures
6. Evaluation deliverables
7. Timeline
8. Personnel
9. Budget
10. Plan for use of results

Tailor these elements to your specific project!

Evaluation Planning Checklist for NSF-ATE Proposals
10 Helpful Hints and 10 Fatal Flaws: Writing Better Evaluation Sections in Your Proposals
Evaluation Plan Elements

1. Evaluation questions
2. Indicators
3. Data sources
4. Data collection methods and instruments
5. Data analysis procedures
6. Evaluation deliverables
7. Timeline
8. Personnel
9. Budget
10. Plan for use of results

Details about data collection and analysis will probably receive the most scrutiny
Let's play

Be the Reviewer!

Get ready to use your poll buttons
The evaluation will utilize an accepted mixed-methods design (Cook & Campbell, 1979). Quantitative and qualitative measures of performance will be used in both a formative and summative manner to gauge the merit and worth of the grant initiative. This mixed-methods approach has proven useful in utilizing both quantitative and qualitative performance indicators in a single research design (Frechtling & Sharp, 1997). It is also consistent with the best practices and recommendations for rigorous scientifically-based research.

Project staff will administer an end-of-workshop survey to obtain participants’ feedback, including both ratings and open-ended comments. The external evaluator will conduct interviews with participants six months following the workshop to determine the extent to which they applied the workshop content. She also will interview a random sample of students at the end of each semester to learn how their knowledge and perceptions of green energy technology were impacted.
<table>
<thead>
<tr>
<th>Indicator</th>
<th>Data Source</th>
<th>Method</th>
<th>Responsible Party</th>
<th>Timing</th>
<th>Analysis Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in course enrollment numbers</td>
<td>Institutional research database</td>
<td>Review of institutional and departmental records</td>
<td>Project PI</td>
<td>End of each semester</td>
<td>Comparison of enrollment numbers over time (start 2 years prior to project start)</td>
</tr>
<tr>
<td>Opinions of faculty and career center staff about the project’s impact</td>
<td>Participating faculty Career center advisors Career center director</td>
<td>In-person interviews</td>
<td>External evaluator</td>
<td>Annually</td>
<td>Inductive coding of interviews to identify themes</td>
</tr>
<tr>
<td>Students’ reports about why they enrolled</td>
<td>Enrolled students</td>
<td>Web survey</td>
<td>Instructors (instructions provided by evaluator)</td>
<td>Beginning of each semester</td>
<td>Descriptive statistics and inductive coding</td>
</tr>
</tbody>
</table>
Leadership Capacity Building for Faculty: The vitality and growth of the ATE community is closely linked to industry trends and needs as well as the acumen of the PIs and their institutions who educate technicians. As such, faculty must: 1) work with their institutional administration, 2) effectively manage both programs and project/center activities, 3) maintain industry connections that include local, statewide, and national economic development efforts, and 4) maintain and cultivate networks with other grantees across funding agencies. Activities that foster these skills might include:

- Mentoring programs that link experienced ATE PIs with new grantees. Activities are expected to lead to new PIs acquiring skills needed to successfully manage, complete, evaluate, disseminate and sustain their projects as well as fostering leadership skills such that they may become mentors at a future time;
- Identifying and mentoring faculty and their administrators for the purpose of developing and implementing a new curriculum in an advanced technological area to educate technicians, for local industry needs; and
- Outreach activities that reach faculty and their institutions to educate them about the value and potential impact of working with the ATE Program and its community. These efforts could include providing information on funding opportunities, developing effective proposal writing skills, providing guidance on ways of surveying area industry to determine industry needs as well as finding and working with local workforce investment boards and other entities.

Teacher Preparation: The foundation for advanced technological education is grounded in strong mathematics, science, and technology education in K-12 schools. The preparation of future teachers who will facilitate student learning in mathematics and science and cultivate an interest in technological careers is an important component of the ATE program. ATE teacher preparation projects help prepare a future K-12 teaching workforce that is skilled in teaching science and mathematics, understands the technological workplace, and can prepare students to use a variety of approaches to solving real world technology related problems using design processes and principles (See Standards for Technological Literacy, ITEA, http://www.itea.org).

Teacher Preparation projects must include a foundation for teachers to engage students in the number, quality, and diversity of prospective K-12 environments. Projects may include developing technology teacher professional programs. These projects are expected to improve student learning through technology experience by enhancing their ability to improve the technological literacy of their students. Project leaders should also be prepared to contribute to longitudinal studies and research providing evidence of the effectiveness of the programming.

Business and Entrepreneurial Skills Development for Students: In addition to technical skills and disciplinary content, students entering the industry environment need skills that allow them to understand and work effectively in a business environment. Many companies have a global presence, and students need to understand that the global economy affects them as employees. Another sector of the industry is comprised of small start-up companies, and these have different attributes than large established firms. Students need to understand these attributes and differences to be effective employees.

Employers often expect employees to possess knowledge, skills and competencies in a specific technical area and to demonstrate professional, industry related, and entrepreneurship acumen. Entrepreneurship skills can be developed in students in technician education programs by having them take selected business courses, by engaging students in problem-based learning using projects of interest to local industry, working with local economic investment organizations and by developing incubator programs that provide experiences for students to interact with entrepreneurs. Projects are encouraged that:

“logic model”

Visual representation of a project’s inputs, activities, outputs, and outcomes and the logical progression of how resources translate into impact
Logic Model Example

Activities: What we will do

Framework Development & Application
- ATE Evaluation Competency Framework
- ATE Professional Development Evaluation Framework

Education
- 4 webinars/year, with supporting materials
- 2 workshops/year, with supporting materials
- 4-6 brief instructional/demonstration videos

Resource Development
- Materials to support development of evaluation knowledge and practice among ATE project leaders and evaluators, e.g., checklists, tools, instruments, templates, guides

Action Design Research on Evaluation
- Small-scale studies to identify and develop exemplary practices
- Resources to support application of those exemplary practices

Program Monitoring
- Annual survey of grantees
- Survey Fact Sheets
- Data snapshots
- Online data displays

Outreach & Dissemination
- Quarterly newsletters
- Conference presentations and journal publications
- Website expansion and enhancement
- Blog
- Engagement of ATE PIs and evaluators in the production and review of all deliverables
- ATE evaluator listing (in collaboration with ATE Central)
- Social media [Facebook, YouTube, Twitter, LinkedIn]

Outputs: What we will produce

Short-Term
- Support ATE project leaders and evaluators to achieve basic competency in evaluation (Goal 1)
- ATE PIs and evaluators are able to locate and use sound materials to guide the design and conduct their evaluations (Goal 2)
- ATE stakeholders are able to reach out to others in the program for advice and collaboration on evaluation (Goal 3)

Mid-Term
- More ATE grantees use evaluation processes and findings for project improvement
- More ATE grantees produce credible evidence of the quality and impact of their work

Long-Term
- Evaluation plays a strategic role in advancing ATE program goals

Outcomes: What will be different because of EvaluATE

Evaluation Questions:
1) To what extent has EvaluATE reached its intended audiences?
2) What are users’ perceptions of EvaluATE’s quality?
3) To what extent has EvaluATE’s work led to improved evaluation knowledge?
4) To what extent and how are EvaluATE’s materials being used?

Also serves as a foundation for a project’s evaluation

Small Project Evaluation: Principles and Practices
ATE Logic Model Template
“theory of change”

“formative evaluation”

“summative evaluation”

“process evaluation”

“outcome evaluation”

“impact evaluation”

“external evaluator”

“internal evaluator”
Comments

Leslie Goodyear, Ph.D.
- Principal Research Scientist at EDC
- Former NSF program officer in the Division of Research on Learning
Questions?

Lori Wingate

Leslie Goodyear
Overview

PART I: Evaluation Fundamentals
Commentary by Leslie Goodyear | Question Break

PART II: Evaluation Requirements and Expectations
Commentary by Leslie Goodyear | Question Break

PART III: Evaluation Staffing, Budgeting, and Utilization
Commentary by Leslie Goodyear | Question Break
Evaluation **Staffing** and Budgeting

Evaluation: All projects and centers carry out evaluative activities. The funds to support an evaluator independent of the project or center must be requested, and the requested funds must match the scope of the proposed evaluative activities.
Evaluators in the ATE Program

84% of ATE projects and centers have external evaluators.

19% use both external and internal evaluators.

81% use internal evaluators only.

11% and 5% don't have designated evaluators.

5% don't have an designated evaluator.
Locating an Evaluator

Check the American Evaluation Association’s Evaluator Directory

If already funded, post an RFP in the “Career” section of AEA’s website

Check with university-based evaluation centers in your region

Ask for recommendations from colleagues or other program grantees
Evaluation Staffing and Budgeting

Evaluation: All projects and centers carry out evaluative activities. The funds to support an evaluator independent of the project or center must be requested, and the requested funds must match the scope of the proposed evaluative activities.

Advanced Technological Education Program
—National Science Foundation
Evaluation Budgeting Rule of Thumb

10% of the cost of conducting the project should be allocated to evaluation

Small Project Evaluation: Principles and Practices
Evaluation Utilization

1. Use results to inform for continuous project improvement
2. Share results with project participants, partners, and other stakeholders
3. Report on project success and lessons learned in annual reports to funders
4. Incorporate evaluation results into new funding proposals
Results from Prior NSF Support

specific outcomes and results including metrics to demonstrate the impact of the project

Broader Impacts
Benefits to society; contributions to the achievement of desired societal outcomes

Intellectual Merit
Advances in knowledge and understanding

EvaluATE Winter 2016 newsletter: Revisiting Intellectual Merit and Broader Support
Served groups that have historically been underrepresented in STEM

Improved STEM education

Enhanced infrastructure for research and education

Contributed to the development of a diverse, globally competitive STEM workforce

Increased economic competitiveness of the United States

Expanded partnerships between academia, industry, and others
New knowledge or improved understanding

Innovative developments

Transformative, revolutionary research
As part of this project, our goal was to increase the number of women who successfully earned an associate’s degree in welding. To this end, we began a targeted recruiting campaign focusing on women who were about to complete or had recently completed other related programs such as pipefitting and construction and developed a brochure for new students that included positive images of women in welding. We used funding to develop the Women in Welding program and support team building and outreach efforts by them. Institutional data reveal that since this project was started, the number of women in the welding program has almost tripled from 12 (2006-10), of which only 8 graduated to 34 (2011-16), of which 17 have already graduated and 5 have only one semester left. Even if the remaining 17 were not to graduate, the 17 who already have is double the number of female students who graduated from the program between 2006-10.”
As part of this project, our goal was to increase the number of women who successfully earned an associate’s degree in welding. To this end, we began a targeted recruiting campaign focusing on women who were about to complete or had recently completed other related programs such as pipefitting and construction and developed a brochure for new students that included positive images of women in welding. We used funding to develop the Women in Welding program and support team building and outreach efforts by them. Institutional data reveal that since this project was started, the number of women in the welding program has almost tripled from 12 (2006-10), of which only 8 graduated to 34 (2011-16), of which 17 have already graduated and 5 have only one semester left. Even if the remaining 17 were not to graduate, the 17 who already have is double the number of female students who graduated from the program between 2006-10.”
As part of this project, our goal was to increase the number of women who successfully earned an associate’s degree in welding. To this end, we began a targeted recruiting campaign focusing on women who were about to complete or had recently completed other related programs such as pipefitting and construction and developed a brochure for new students that included positive images of women in welding. We used funding to develop the Women in Welding program and support team building and outreach efforts by them. Institutional data reveal that since this project was started, the number of women in the welding program has almost tripled from 12 (2006-10), of which only 8 graduated to 34 (2011-16), of which 17 have already graduated and 5 have only one semester left. Even if the remaining 17 were not to graduate, the 17 who already have is double the number of female students who graduated from the program between 2006 -10.
Results from Prior NSF Support

ADDITIONAL TIPS

• Focus on outcomes
• Include as much evidence as possible
• Describe how the current proposal is building on results from prior work
• Be forthright about what didn’t work and lessons learned

Intellectual Merit and Broader Impacts: Identifying Your Project’s Achievements and Supporting Evidence
<table>
<thead>
<tr>
<th>TOPIC</th>
<th>RESOURCE</th>
<th>LINK</th>
</tr>
</thead>
</table>
Webinar: Small Project Evaluation: Principles and Practices

Webinar included demonstrations of:
- Evaluation budget development
- Logic model development
- Evaluation question development
- How to divide internal and external evaluation tasks

Check out the recording, plus slides and resource handout!
www.evalu-ate.org/webinars/2016-march/
Leslie Goodyear, Ph.D.

- Principal Research Scientist at EDC
- Former NSF program officer in the Division of Research on Learning
Questions?

Lori Wingate

Leslie Goodyear
Join Us – All Webinars 3 pm Eastern

June 16, 2016

Tips for Managing Large Consortiums
Leading a consortium across one state or across 6 to accomplish goals can be hard. This webinar will provide best practices for helping you successfully lead any consortium to accomplish common goals.

Presenters:
Ann Beheler, National Convergence Technology Center (CTC)
John Sands, CSSIA
Marianne Krismer, Health Professions Pathway TAACCCT Consortium

For Other Upcoming Webinars See: http://www.atecenters.org/ccta
Join us in Pittsburgh, PA!

July 25-28, 2016

www.highimpact-tec.org
Register for HI-TEC and DOL and NSF Workforce Convening

HI-TEC Conference July 27-28 in Pittsburgh, PA

Free follow-up DOL and NSF Workforce convening (formally TAACCCT Convening) for all TAACCCT grantees and others who can benefit on Friday, July 29 from 8:30 am to 12:30 pm.
Contacts

• Ann Beheler, abeheler@collin.edu
• Leslie Goodyear, lgoodyear@edc.org
• Lori Wingate, lori.wingate@wmich.edu

http://www.atecenters.org/ccta